Sensitive tree species remain at risk despite improved air quality benefits to US forests

0
94

  • Oulehle, F. et al. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Glob. Change Biol. 17, 3115–3129 (2011).

    Article 

    Google Scholar 

  • Du, E., Fenn, M. E., De Vries, W. & Ok, Y. S. Atmospheric nitrogen deposition to global forests: status, impacts and management options. Environ. Pollut. 250, 1044–1048 (2019).

    Article 
    CAS 

    Google Scholar 

  • Butler, T. J., Likens, G. E., Vermeylen, F. M. & Stunder, B. J. B. The impact of changing nitrogen oxide emissions on wet and dry nitrogen deposition in the northeastern USA. Atmos. Environ. 39, 4851–4862 (2005).

    Article 
    CAS 

    Google Scholar 

  • Burns, D. A., Fenn, M. E. & Baron, J. S. Effects of acid deposition on ecosystems: advances in the state of the science (USGS Publications Warehouse, 2011); http://pubs.er.usgs.gov/publication/70194383

  • Du, E., De Vries, W., Galloway, J. N., Hu, X. & Fang, J. Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environ. Res. Lett. 9, 095004 (2014).

    Article 
    CAS 

    Google Scholar 

  • Nopmongcol, U., Beardsley, R., Kumar, N., Knipping, E. & Yarwood, G. Changes in United States deposition of nitrogen and sulfur compounds over five decades from 1970 to 2020. Atmos. Environ. 209, 144–151 (2019).

    Article 
    CAS 

    Google Scholar 

  • Clark, C. M. et al. Atmospheric deposition and exceedances of critical loads from 1800−2025 for the conterminous United States. Ecol. Appl. 28, 978–1022 (2018).

    Article 

    Google Scholar 

  • Li, Y. et al. Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl Acad. Sci. USA 113, 5874–5879 (2016).

    Article 
    CAS 

    Google Scholar 

  • Walker, J. T. et al. Toward the improvement of total nitrogen deposition budgets in the United States. Sci. Total Environ. 691, 1328–1352 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Long-term trends in total inorganic nitrogen and sulfur deposition in the US from 1990 to 2010. Atmos. Chem. Phys. 18, 9091–9106 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fenn, M. E. et al. Evaluating the effects of nitrogen and sulfur deposition and ozone on tree growth and mortality in California using a spatially comprehensive forest inventory. Ecol. Manage. 465, 118084 (2020).

    Article 

    Google Scholar 

  • Horn, K. J. et al. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS ONE 13, e0205296 (2018).

    Article 

    Google Scholar 

  • Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).

    Article 

    Google Scholar 

  • Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. https://doi.org/10.1890/08-1140.1 (2010).

    Article 

    Google Scholar 

  • Clark, C. M., Thomas, R. Q. & Horn, K. J. Above-ground tree carbon storage in response to nitrogen deposition in the US is heterogeneous and may have weakened. Commun. Earth Environ. 4, 35 (2023).

    Article 

    Google Scholar 

  • Sullivan, T. J. et al. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York. Environ. Sci. Technol. 47, 12687–12694 (2013).

    Article 
    CAS 

    Google Scholar 

  • Bowman, W. D., Cleveland, C. C., Halada, Ĺ., Hreško, J. & Baron, J. S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 1, 767–770 (2008).

    Article 
    CAS 

    Google Scholar 

  • Clark, J. R., Hemery, G. E. & Savill, P. S. Early growth and form of common walnut (Juglans regia L.) in mixture with tree and shrub nurse species in southern England. Forestry 81, 631–644 (2008).

    Article 

    Google Scholar 

  • Gilliam, F. S. et al. Decreased atmospheric nitrogen deposition in eastern North America: predicted responses of forest ecosystems. Environ. Pollut. 244, 560–574 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fenn, M. E. et al. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol. Appl. 8, 706–633 (1998).

    Article 

    Google Scholar 

  • Pardo, L. H. et al. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol. Appl. 21, 3049–3082 (2011).

    Article 

    Google Scholar 

  • Hyvönen, R. et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89, 121–137 (2008).

    Article 

    Google Scholar 

  • Magill, A. H. et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Ecol. Manage. 196, 7–28 (2004).

    Article 

    Google Scholar 

  • Wallace, Z. P., Lovett, G. M., Hart, J. E. & Machona, B. Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. Ecol. Manage. 243, 210–218 (2007).

    Article 

    Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Mitchell, M. J. & Raynal, D. J. Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ. Pollut. 123, 327–336 (2003).

    Article 
    CAS 

    Google Scholar 

  • St. Clair, S. B. & Lynch, J. P. Differences in the success of sugar maple and red maple seedlings on acid soils are influenced by nutrient dynamics and light environment. Plant Cell Environ. 28, 874–885 (2005).

    Article 

    Google Scholar 

  • Adams, M. B., Kochenderfer, J. N. & Edwards, P. J. The Fernow watershed acidification study: ecosystem acidification, nitrogen saturation and base cation leaching. Water Air Soil Pollut. 7, 267–273 (2007).

    Article 
    CAS 

    Google Scholar 

  • Werner, B. & Spranger, T. (eds) Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. (Federal Environmental Agency, 1996).

  • Schulze, E. D. et al. Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Pollut. 48, 451–456 (1989).

    Article 
    CAS 

    Google Scholar 

  • Nilsson, J. Critical loads for sulphur and nitrogen. In Air Pollution and Ecosystems (ed. Mathy, P.) 85–91 (Springer, 1988); https://doi.org/10.1007/978-94-009-4003-1_11

  • CLAD Critical Load Definitions Version 1.1 (NADP, 2017).

  • Ellis, R. A. et al. Present and future nitrogen deposition to national parks in the United States: critical load exceedances. Atmos. Chem. Phys. 13, 9083–9095 (2013).

    Article 

    Google Scholar 

  • Geiser, L. H., Nelson, P. R., Jovan, S. E., Root, H. T. & Clark, C. M. Assessing ecological risks from atmospheric deposition of nitrogen and sulfur to US forests using epiphytic macrolichens. Diversity 11, 87 (2019).

    Article 
    CAS 

    Google Scholar 

  • Clark, C. M. et al. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat. Plants 5, 697–705 (2019).

    Article 
    CAS 

    Google Scholar 

  • Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wilkins, K., Clark, C. & Aherne, J. Ecological thresholds under atmospheric nitrogen deposition for 1200 herbaceous species and 24 communities across the United States. Glob. Change Biol. 28, 2381–2395 (2022).

    Article 
    CAS 

    Google Scholar 

  • Smith, W. B. Forest inventory and analysis: a national inventory and monitoring program. Environ. Pollut. 116, S233–S242 (2002).

    Article 
    CAS 

    Google Scholar 

  • Canham, C. D. & Murphy, L. The demography of tree species response to climate: sapling and canopy tree growth. Ecosphere 7, e01474 (2016).

    Google Scholar 

  • Canham, C. D. & Murphy, L. The demography of tree species response to climate: sapling and canopy tree survival. Ecosphere 8, e01701 (2017).

    Article 

    Google Scholar 

  • Bell, M. D. et al. A framework to quantify the strength of ecological links between an environmental stressor and final ecosystem services. Ecosphere 8, e01806 (2017).

    Article 

    Google Scholar 

  • Wilson, B. T., Lister, A. J. & Riemann, R. I. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Ecol. Manage. 271, 182–198 (2012).

    Article 

    Google Scholar 

  • Wilson, B. T., Lister, A. J., Riemann, R. I. & Griffith, D. M. Live Tree Species Basal Area of the Contiguous United States (2000–2009) (USDA, 2013).

  • Pavlovic, N. R. et al. Empirical nitrogen and sulfur critical loads of US tree species and their uncertainties with machine learning. Sci. Total Environ. 857, 159252 (2023).

    Article 
    CAS 

    Google Scholar 

  • Clark, C. M. et al. (eds) Air Pollution Effects on Forests: A Guide to Species Ecology, Ecosystem Services, and Responses to Nitrogen and Sulfur Deposition Trees Vol. 1. Trees. FS-1156 (USDA, 2021); https://www.fs.usda.gov/research/treesearch/63567

  • Kleijn, D., Bekker, R. M., Bobbink, R., De Graaf, M. C. C. & Roelofs, J. G. M. In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: a comparison of common and rare species. J. Appl. Ecol. 45, 680–687 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bobbink, R. et al. Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In Empirical Critical Loads for Nitrogen Expert Workshop Proc. (ed. Achermann, B.) 43–170 (Swiss Agency for the Environment, Forests and Landscape, 2003).

  • Stevens, C. J. et al. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ. Pollut. 159, 665–676 (2011).

    Article 
    CAS 

    Google Scholar 

  • Van den Berg, L. J. L., Peters, C. J. H., Ashmore, M. R. & Roelofs, J. G. M. Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation. Environ. Pollut. 154, 359–369 (2008).

    Article 

    Google Scholar 

  • Wildfire Statistics (Congressional Research Service, 2022).

  • Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards (US EPA, 2020).

  • Warner, J. X. et al. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 44, 2875–2884 (2017).

    Article 
    CAS 

    Google Scholar 

  • Fenn, M. E. et al. On-road emissions of ammonia: an underappreciated source of atmospheric nitrogen deposition. Sci. Total Environ. 625, 909–919 (2018).

    Article 
    CAS 

    Google Scholar 

  • NADP Program Office, Wisconsin State Laboratory of Hyiene. National Atmospheric Deposition Program (NRSP-3) https://nadp.slh.wisc.edu/data-and-information-use-conditions/ (2022).

  • Schwede, D. B. & Lear, G. G. A novel hybrid approach for estimating total deposition in the United States. Atmos. Environ. 92, 207–220 (2014).

    Article 
    CAS 

    Google Scholar 

  • Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35 (2003).

    Google Scholar 

  • Master Tree Species List Version 9.2 (USFS, 2022).

  • Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).

    Article 

    Google Scholar 

  • Homer, C. et al. Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 73, 337 (2007).

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 

    Google Scholar 

  • Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article 

    Google Scholar 

  • O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Article 

    Google Scholar 

  • 2019 TIGER/Line Shapefiles (US Census Bureau, 2020).

  • www.nature.com

    https://www.nature.com/articles/s41893-023-01203-8