Protected areas slow declines unevenly across the tetrapod tree of life

0
94

  • Rodrigues, A. S. L. & Cazalis, V. The multifaceted challenge of evaluating protected area effectiveness. Nat. Commun. 11, 5147 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

  • Global Forest Resources Assessment 2020—Key findings (FAO, 2020); https://doi.org/10.4060/ca8753en.

  • Burke, K. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

  • Kunming-Montreal Global Biodiversity Framework (Convention on Biological Diversity, 2022).

  • Naughton-Treves, L., Holland, M. B. & Brandon, K. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu. Rev. Env. Res. 30, 219–252 (2005).

    Article 

    Google Scholar 

  • Visualizing the Effectiveness of Conservation Strategies (Conservation Effectiveness, 2021); https://www.conservationeffectiveness.org/.

  • Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A. & Betts, M. G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 5, 520–529 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Living Planet Report 2020: Bending the Curve of Biodiversity Loss (WWF, 2020).

  • Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Global Ecol. Biogeogr. 27, 760–786 (2018).

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Proença, V. et al. Global biodiversity monitoring: from data sources to essential biodiversity variables. Biol. Conserv. 213, 256–263 (2017).

    Article 

    Google Scholar 

  • Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).

    Article 

    Google Scholar 

  • Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nowakowski, A. J., Frishkoff, L. O., Thompson, M. E., Smith, T. M. & Todd, B. D. Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe. Proc. Natl Acad. Sci. USA 115, E3454–E3462 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368, 1341–1347 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Amano, T. et al. Responses of global waterbird populations to climate change vary with latitude. Nat. Clim. Change 10, 959–964 (2020).

    Article 
    ADS 

    Google Scholar 

  • Marquet, P. A., Lessman, J. & Shaw, R. in Biodiversity and Climate Change (eds Lovejoy, T. E. & Hannah, L.) 283–293 (Yale Univ. Press, 2019).

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

  • Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

  • Kaufmann, D., Kraay, A. & Mastruzzi, M. Governance Matters VIII: Aggregate and Individual Governance Indicators, 1996–2008. Policy Research Working Paper No. 4978 (World Bank, 2009).

  • Smith, R. J., Muir, R. D. J., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67–70 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, D. C., Agrawal, A. & Roberts, J. T. Biodiversity, governance, and the allocation of international aid for conservation. Conserv. Lett. 6, 12–20 (2013).

    Article 

    Google Scholar 

  • Kery, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS Vol. 2 (Academic Press, 2021).

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Highlighted Indicators (IPBES, accessed 12 September 2023); https://www.ipbes.net/highlighted-indicators-0.

  • Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Arriagada, R. A., Ferraro, P. J., Sills, E. O., Pattanayak, S. K. & Cordero-Sancho, S. Do payments for environmental services affect forest cover? A farm-level evaluation from Costa Rica. Land Econ. 88, 382–399 (2012).

    Article 

    Google Scholar 

  • Jones, I. J. et al. Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proc. Natl Acad. Sci. USA 117, 28515–28524 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pressey, R. L. et al. The mismeasure of conservation. Trends Ecol. Evol. 36, 808–821 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bingham, H. C. et al. User Manual for the World Database on Protected Areas and World Database on Other Effective Area- Based Conservation Measures: 1.6 (UNEP-WMC, 2019).

  • Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manage. 177, 593–596 (2003).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Murray, A. H., Nowakowski, A. J. & Frishkoff, L. O. Climate and land-use change severity alter trait-based responses to habitat conversion. Glob. Ecol. Biogeogr. 30, 598–610 (2021).

  • Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).

    Article 
    ADS 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosenbaum, P. R. Modern algorithms for matching in observational studies. Annu. Rev. Stat. Appl. 7, 143–176 (2020).

    Article 
    MathSciNet 

    Google Scholar 

  • Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).

  • Ives, A. R. & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).

    Article 

    Google Scholar 

  • de Villemereuil, P., Wells, J. A., Edwards, R. D. & Blomberg, S. P. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coetzee, B. W. T., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9, e105824 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaget, E. et al. Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conserv. Biol. 35, 834–845 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Article 

    Google Scholar 

  • Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    Article 
    ADS 

    Google Scholar 

  • Thiollay, J.-M. The decline of raptors in West Africa: long-term assessment and the role of protected areas. Ibis 148, 240–254 (2006).

    Article 

    Google Scholar 

  • Beaudrot, L. et al. Standardized assessment of biodiversity trends in tropical forest protected areas: the end is not in sight. PLoS Biol. 14, e1002357 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craigie, I. D. et al. Large mammal population declines in Africa’s protected areas. Biol. Conserv. 143, 2221–2228 (2010).

    Article 

    Google Scholar 

  • Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • www.nature.com

    https://www.nature.com/articles/s41586-023-06562-y