Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate

0
108

  • Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esper, J., Düthorn, E., Krusic, P. J., Timonen, M. & Büntgen, U. Northern European summer temperature variations over the Common Era from integrated tree‐ring density records. J. Quat. Sci. 29, 487–494 (2014).

    Article 

    Google Scholar 

  • Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).

    Article 

    Google Scholar 

  • Fernández-Donado, L. et al. Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim. Past 9, 393–421 (2013).

    Article 

    Google Scholar 

  • Masson-Delmotte, V. et al. (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

  • Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frank, D., Esper, J., Zorita, E. & Wilson, R. A noodle, hockey stick, and spaghetti plate: a perspective on high‐resolution paleoclimatology. Wiley Interdiscip. Rev. Clim. Change 1, 507–516 (2010).

    Article 

    Google Scholar 

  • Anchukaitis, K. J. & Smerdon, J. E. Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era. Quat. Sci. Rev. 286, 107537 (2022).

    Article 

    Google Scholar 

  • Wilson, R. et al. Last millennium northern hemisphere summer temperatures from tree rings: Part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).

    Article 
    ADS 

    Google Scholar 

  • Schneider, L. et al. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 42, 4556–4562 (2015).

    Article 
    ADS 

    Google Scholar 

  • Zhao, B. et al. Prolonged drying trend coincident with the demise of Norse settlement in southern Greenland. Sci. Adv. 8, eabm4346 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradley, R. S., Wanner, H. & Diaz, H. F. The Medieval Quiet Period. Holocene 26, 990–993 (2016).

    Article 
    ADS 

    Google Scholar 

  • Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • PAGES2kConsortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

    Article 

    Google Scholar 

  • Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A. & Funkhouser, G. The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5, 229–237 (1995).

    Article 
    ADS 

    Google Scholar 

  • Esper, J. et al. Orbital forcing of tree-ring data. Nat. Clim. Change 2, 862–866 (2012).

    Article 
    ADS 

    Google Scholar 

  • Franke, J., Frank, D., Raible, C. C., Esper, J. & Brönnimann, S. Spectral biases in tree-ring climate proxies. Nat. Clim. Change 3, 360–364 (2013).

    Article 
    ADS 

    Google Scholar 

  • Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R. & Büntgen, U. Signals and memory in tree-ring width and density data. Dendrochronologia 35, 62–70 (2015).

    Article 

    Google Scholar 

  • Zhang, H. et al. Modified climate with long term memory in tree ring proxies. Environ. Res. Lett. 10, 084020 (2015).

    Article 
    ADS 

    Google Scholar 

  • Esper, J. et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 145, 134–151 (2016).

    Article 
    ADS 

    Google Scholar 

  • McCarroll, D., Young, G. H. & Loader, N. J. Measuring the skill of variance-scaled climate reconstructions and a test for the capture of extremes. Holocene 25, 618–626 (2015).

    Article 
    ADS 

    Google Scholar 

  • Büntgen, U. Scrutinizing tree-ring parameters for Holocene climate reconstructions. Wiley Interdiscip. Rev. Clim. Change 13, e778 (2022).

    Article 

    Google Scholar 

  • Battipaglia, G. et al. Five centuries of Central European temperature extremes reconstructed from tree-ring density and documentary evidence. Glob. Planet. Change 72, 182–191 (2010).

    Article 
    ADS 

    Google Scholar 

  • Von Storch, H. et al. Reconstructing past climate from noisy data. Science 306, 679–682 (2004).

    Article 
    ADS 

    Google Scholar 

  • Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W. & Trouet, V. Multi-century evaluation of Sierra Nevada snowpack. Nat. Clim. Change 6, 2–3 (2016).

    Article 
    ADS 

    Google Scholar 

  • Lücke, L. J., Hegerl, G. C., Schurer, A. P. & Wilson, R. Effects of memory biases on variability of temperature reconstructions. J. Clim. 32, 8713–8731 (2019).

    Article 
    ADS 

    Google Scholar 

  • von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy—practical guidelines. Front. Plant Sci. 7, 781 (2016).

    Google Scholar 

  • Prendin, A. L. et al. New research perspectives from a novel approach to quantify tracheid wall thickness. Tree Physiol. 37, 976–983 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Björklund, J. et al. Scientific merits and analytical challenges of tree‐ring densitometry. Rev. Geophys. 57, 1224–1264 (2019).

    Article 
    ADS 

    Google Scholar 

  • Björklund, J., Seftigen, K., Fonti, P., Nievergelt, D. & von Arx, G. Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. Dendrochronologia 60, 125673 (2020).

    Article 

    Google Scholar 

  • Lopez-Saez, J. et al. Tree-ring anatomy of Pinus cembra trees opens new avenues for climate reconstructions in the European Alps. Sci. Total Envir. 855, 158605 (2023).

  • Seftigen, K. et al. Prospects for dendroanatomy in paleoclimatology – a case study on Picea engelmannii from the Canadian Rockies. Clim. Past 18, 1151–1168 (2022).

    Article 

    Google Scholar 

  • Allen, K. J., Nichols, S. C., Evans, R. & Baker, P. J. Characteristics of a multi-species conifer network of wood properties chronologies from Southern Australia. Dendrochronologia 76, 125997 (2022).

    Article 

    Google Scholar 

  • Melvin, T. M., Grudd, H. & Briffa, K. R. Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: re-processing 1500 years of Torneträsk density and ring-width data. Holocene 23, 364–373 (2013).

    Article 
    ADS 

    Google Scholar 

  • Linderholm, H. W. & Gunnarson, B. E. Were medieval warm-season temperatures in Jämtland, central Scandinavian Mountains, lower than previously estimated? Dendrochronologia 57, 125607 (2019).

    Article 

    Google Scholar 

  • Grudd, H. Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857 (2008).

    Article 

    Google Scholar 

  • Matskovsky, V. & Helama, S. Testing long-term summer temperature reconstruction based on maximum density chronologies obtained by reanalysis of tree-ring data sets from northernmost Sweden and Finland. Clim. Past 10, 1473–1487 (2014).

    Article 

    Google Scholar 

  • Büntgen, U. et al. Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia 64, 125757 (2020).

    Article 

    Google Scholar 

  • Guillet, S. et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 10, 123–128 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wu, T. et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 28, 34–56 (2014).

    Google Scholar 

  • Landrum, L. et al. Last millennium climate and its variability in CCSM4. J. Clim. 26, 1085–1111 (2013).

    Article 
    ADS 

    Google Scholar 

  • Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article 

    Google Scholar 

  • Yukimoto, S. et al. A new global climate model of the Meteorological Research Institute: MRI-CGCM3 – model description and basic performance–. J. Meteorol. Soc. Japan. Ser. II 90A, 23–64 (2012).

    Article 

    Google Scholar 

  • Bao, Q. et al. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci. 30, 561–576 (2013).

    Article 

    Google Scholar 

  • Phipps, S. et al. The CSIRO Mk3L climate system model version 1.0 – part 1: description and evaluation. Geosci. Model Dev. 4, 483–509 (2011).

    Article 
    ADS 

    Google Scholar 

  • Miller, R. L. et al. CMIP5 historical simulations (1850–2012) with GISS ModelE2. J. Adv. Model. Earth Syst. 6, 441–478 (2014).

    Article 
    ADS 

    Google Scholar 

  • Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    Article 
    ADS 

    Google Scholar 

  • Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–7391 (2013).

    Article 
    ADS 

    Google Scholar 

  • Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).

    Article 
    ADS 

    Google Scholar 

  • Johns, T. C. et al. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim. Dyn. 20, 583–612 (2003).

    Article 

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 
    ADS 

    Google Scholar 

  • Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    Article 
    ADS 

    Google Scholar 

  • Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 23, 201–213 (1984).

    Article 
    ADS 

    Google Scholar 

  • Helama, S., Melvin, T. M. & Briffa, K. R. Regional curve standardization: state of the art. Holocene 27, 172–177 (2017).

    Article 
    ADS 

    Google Scholar 

  • Andersson, G. Om talltorkan i öfra Sverige våren 1903 (Statens skogsförsöksanstalt, 1905).

  • Pallardy, S. G. Physiology of Woody Plants 3rd edn (Academic, 2008).

  • Vaganov, E. A., Hughes, M. K. & Shashkin, A. V. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Eenvironments Vol. 183 (Springer Science & Business Media, 2006).

  • Abbott, P. M. et al. Cryptotephra from the Icelandic Veiðivötn 1477 ce eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s ce and assessing the eruption’s climatic impact. Clim. Past 17, 565–585 (2021).

    Article 

    Google Scholar 

  • Stoffel, M. et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 8, 784–788 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anchukaitis, K. J. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat. Sci. Rev. 163, 1–22 (2017).

    Article 
    ADS 

    Google Scholar 

  • McCarroll, D. et al. A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. Holocene 23, 471–484 (2013).

    Article 
    ADS 

    Google Scholar 

  • Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nat. Clim. Change 4, 362–367 (2014).

    Article 
    ADS 

    Google Scholar 

  • PAGES2k-PMIP3 group. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Clim. Past 11, 1673–1699 (2015).

    Article 

    Google Scholar 

  • Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change 60, 289–305 (2008).

    Article 
    ADS 

    Google Scholar 

  • Büntgen, U. et al. The influence of decision-making in tree ring-based climate reconstructions. Nat. Commun. 12, 3411 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pawlowicz, R. M_Map: a mapping package for MATLAB, MATLAB package v.1.4m. https://www.eoas.ubc.ca/~rich/map.html (2020).

  • Morice, C. P. et al. An updated assessment of near‐surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).

    Article 
    ADS 

    Google Scholar 

  • Schweingruber, F. H., Bartholin, T., Schār, E. & Briffa, K. R. Radiodensitometric‐dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17, 559–566 (1988).

    Article 

    Google Scholar 

  • Briffa, K. R. et al. A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346, 434–439 (1990).

    Article 
    ADS 

    Google Scholar 

  • Briffa, K. R. et al. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim. Dyn. 7, 111–119 (1992).

    Article 

    Google Scholar 

  • Gärtner, H., Lucchinetti, S. & Schweingruber, F. A new sledge microtome to combine wood anatomy and tree-ring ecology. IAWA J. 36, 452–459 (2015).

    Article 

    Google Scholar 

  • von Arx, G. & Carrer, M. ROXAS – a new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 32, 290–293 (2014).

    Article 

    Google Scholar 

  • Denne, M. P. Definition of latewood according to Mork (1928). IAWA J. 10, 59–62 (1989).

    Article 

    Google Scholar 

  • Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J. & Linderholm, H. W. Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Clim. Past 10, 877–885 (2014).

    Article 

    Google Scholar 

  • Schmidt, G. et al. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci. Model Dev. 5, 185–191 (2012).

    Article 
    ADS 

    Google Scholar 

  • National Research Council. Surface Temperature Reconstructions for the Last 2,000 Years (National Academies Press, 2007).

  • Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull. 41, 45–53 (1981).

    Google Scholar 

  • Matalas, N. C. Statistical properties of tree ring data. Int. Assoc. Sci. Hydrol. Bull. 7, 39–47 (1962).

    Article 

    Google Scholar 

  • Piermattei, A., Crivellaro, A., Carrer, M. & Urbinati, C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29, 613–620 (2015).

    Article 
    CAS 

    Google Scholar 

  • Percival, D. B. & Walden, A. T. Spectral Analysis for Physical Applications (Cambridge Univ. Press, 1993).

  • Huybers, P. pmtmPH.m v.1.0.0.0. https://www.mathworks.com/matlabcentral/fileexchange/2927-pmtmph-m (MATLAB Central File Exchange, 2022).

  • Haurwitz, M. W. & Brier, G. W. A critique of the superposed epoch analysis method: its application to solar–weather relations. Mon. Weather Rev. 109, 2074–2079 (1981).

    Article 
    ADS 

    Google Scholar 

  • Brad Adams, J., Mann, M. E. & Ammann, C. M. Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426, 274–278 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blarquez, O. & Carcaillet, C. Fire, fuel composition and resilience threshold in subalpine ecosystem. PLoS ONE 5, e12480 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: an improved ice core‐based index for climate models. J. Geophys. Res. Atmos. 113, D23111 (2008).

    Article 
    ADS 

    Google Scholar 

  • Toohey, M. & Sigl, M. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 bce to 1900 ce. Earth Syst. Sci. Data 9, 809–831 (2017).

    Article 
    ADS 

    Google Scholar 

  • www.nature.com

    https://www.nature.com/articles/s41586-023-06176-4